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FREE CONVECTION FROM A POINT HEAT SOURCE 
IN A STABLY STRATIFIED MEDIUM* 

A.S. KABANOV and S.N. NETRBBA 

A steady state solution is obtained for the linear system of Navier-Stokes equa- 
tions in the Boussinesq approximation for free axisymmetric convection flows from a 
point heat source in a stably stratified fluid. Limits of applicability of linear 
solution are determined. The flow peculiarity associated with the formation of 
stationary three-dimensional cells that alternate along the vertical is revealed. 
Qualitative properties of the convective flow stratified structure are determined. 
The steady state problem of the effect of horizontal stream flowing at constant 
velocity on convection from a point heat source is solved. It is shownthatstation- 
ary waves with damped amplitude appear downstream of the heat source. The length 
of these waves depends on the stream velocity and, also, on the vertical density 
gradient of the medium. 

1. Statement of the problem of axisymmetric free convection and its solu- 
tion. Let a point heat source of constant intensity Q (the quantity of heat releasedperunit 
of time) be active in space. The investigation is carried out on the example in which steady 
stratification is generated by varying the concentration of dissolved salt or suspended part- 
icles along the fluid height. The coefficients of kinematic viscosity v, thermal diffusivity 
X , and of diffusion D of salt are assumed nonzero and have , generally different values. We 

define the steady motion of the viscous heat-conducting medium by a system of Navier-Stokes 
equations in the Boussinesq approximation in the presence of axial symmetry (the coordinate 
origin is at the source point) 

-p-Vp/&+vAv,=O, A=--&+~-l&-r2 j-&m 

- p-‘Bp / dz + v (A + P) u, + (BT’ - c’) g = 0 
a (TV+) / ar + a (rvJ I a2 = 0 

(1.1) 

x (A + r-‘) / 2” + Q (pc,)-’ 6 (z)(2nr)-16 (r) = 0 

D (A + rT2) c’ + I$ = 0, r = -&, / az = const > o 

where and V, are the radial and vertical velocity components of the medium, p isthemedium 
pressure minus the hydrostatic pressure, p is the fluid density, g is the acceleration of 
gravity, p is the coefficient of thermal expansion of the medium, T'= T -TT,,where Tis the 
temperature and Z', is the temperature of the unperturbed medium, c,is the medium specific 
heat at constant volume, C’ =C -CO, C is the ratio of salt density to that of the fluid, 
Co(Z) is the value of c in the unperturbed medium. 

and 

We introduce the Stokes stream function J, and the azimuthal component of the vector pot- 
ential B defined as follows: 

v, = - r-la* / a2, U, = r-W I ar B = r-‘lp (1.2) 

The flow is of local character and damped at infinity. This implies the absence of the 
stream potential part /l/, and the system of equations of convection with boundary conditions 
reduces to the problem 

vAAB + a (j3T’ - c’)g / ar = 0 

x (A + r-l) T' + Q (pc,)-‘6 (z)(2nr)+6 (r) = 0 
D (A + r-l) c’ + J?v, = 0 
r = 00, 2=fC0, B = 0, T’ = 0, c’ = 0 

r = 0, Ip = 0, aT’ I ar = 0, ad I ar = 0 

(1.3) 
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Let us solve this system of equations for B. Acting on the first of thembythe operator 
A,and on the second and third by the operator aIdi, and taking into account (1.21, after some 

simple algebraic operations, we obtain the problem 

[v,*A3 + wo2 (A - a* / &?)I B = 

Qb+ (PC,)-'6 (z) a [(2nr)-% (r)l / dr 
(1.4) 

r=O,m,z=&cl,B=O 

vo=v/I/~E, oa=~/TgSc=coconst > 0 

Pr=v/x, Sc=vlD 

Applying to (1.4) the Fourier and Hankel transforms to z and r,respectively, we obtain 
an algebraic equation for the definition of function B. Solving it and effectingtheinverse 
transformation, we represent the solution of problem (1.4) in the form 

where J,is a Bessel function of the first kind of order one. 
We use the integral representation for function J,of the form 

JI (4 = --$ 1 sin (sr sin @)sin a d@ 
” 

(1.5) 

(1.6) 

Substituting (1.6) into (1.5), passing in the obtained formula to polar coordinates (a, q) 

in conformity with relations k=j.sincp, s=A coscp, dsdk=IrdAdq, and to variables 

and 8(r= Rsine,z= Rcos~), we obtain 
R = ($ + ~9)'~~ 

(1.7) 

When deriving (1.7), the order of integration with respect to a and 1 was altered. After 

integration with respect to h, from (1.7) we obtained a new integral representation for B of 

the form 

B (R 8) = A [B+ (R, e) + B- (R, e)j (1.8) 

which proved more convenient than (1.5) in the subsequent analysis. 

2. The flow near the source and limits of linear solution applicability. 
We assume parameter R/l> 1 in (1.8), and restrict the investigation to the first approxima- 

tion in the expansion of functions R+and B- in the small parameter. The determination of A'. 

(and respectively of 1/)) then reduces to finding the appropriate tabulated integrals. Weobtain 

11, = 2R (:i,; ‘i,) Qt$ (PC,)- ~Q~,;3~ r’) + 0 [(K / L)Y (2.1) 

where B (‘1,; :/J z 0.25 is the beta-function. Using (1.2) and (2.1) we find that at point r :_ 

z = Uthe vertical velocity 

u, (0, 0) = Qgfi (pcJ-'(rg)-'iV"i: Pr SC-J/< (2.2) 

which implies the dependence of uz the PrandtlPr and Schmidt SC numbers. It follows from (1.8), 

(2.1), and (2.2) that in the case of neutral stratification (I‘= 0) the linear solution is 

divergent. This means that, when p = 0 the linear solution of the unsteady problem can be 

useful only in the limited interval of time from the beginning of source action. In time the 

convection mode above a point source of arbitrarily low intensity when r = 0 becomesnonlinear, 
and there appears a steady region in the form of a thin heat flux in which the flow is self- 

similar /2/. 
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The possibility of appearance of the steady flow mode defined by the linearapproximation 
(1.8) is related to the appearance in the fifth of Eqs.(l.l) of the term Pu,which may be 

considered as an induced source of matter, which compensates the heat source effect on the 
fluid buoyancy. 

The characteristic dimension L in the region where the induced source has a compensating 
effect on source Q is determined by the equality 

Pv,*L3 = j3Q (pc,)-' (2.3) 

where the vertical velocity at the point where the source Q is acting is to be selected for 
c UZ * From (2.2) and (2.3) we have 

L = X-'lPr'i&'itl = f~~)-',~~',:p~-'/*~c'/lz (2.4) 

Formulas (2.2) and (2.4) define the limits of applicability of linear approximation when 
Re =i v,L/v < 1. The last condition together with (2.2) and (2.4) imply that the linear approx- 
imation is valid when 

Q < fg$}-‘pc, (rg~/~v~Pr-~/~se'/s (2.5) 

3. The structure of flow away from the source. Relation (1.8) enables us to con- 
clude that the flow is antisymmetric relative to the horizontal plane drawn through the co- 
ordinate origin. Hence it is possible to restrict the analysis of the flow structure only to 
the upper half-space where %<%<S&. we assume parameter R/E>% in BC and B-in (1.8). 

When%+0 and %#n/2, m+> \rn- 1, it is possible to neglect the quantity B+ whichissmaller 
than R-. We use the notation 

. x/2 
B- = B,- “i- Bo-, S; = 5 B, dcp, 3, = R,- dv i (3.1) 

*=*v+401 &)v= ‘4r-';V-, $0 = ilf& 

When 'P >O then m-C% and the integrand in Bvm (1.8) in (3.1) is an analytic function 
of@ and 9. The basic contribution to 3; is provided by the neighborhoods of saddle points 

(I, = Qv = n/2, (p = 9.J = 2+r% + arccos(-3-'cos%)f (3.21 

Calculating Bq- by &method of steepest descent for multiple integrals /3/ and taking 
into account (3.1) and (1.2), we obtain 

9 = Kf (%) exp !--R1-lm-l (%)I sin ]Ilr'm'- (%)] 
ur = Ki(%) m- (%)(Bt)-l ctg % ctg (mV - %) x 

(3.3) 

exp ]--Rl-'m-(%)] (sin iR.t-‘rn- (%)I - cos [Rl-‘m- (%)I) 
K = 2-'k4$$ (pc&' (~g)-Qv-',z Pr SC-'/r 
f (%)= sin'M {sin (mV - 0) ]sin-2(cr, - 0) + 2-l cos-* (pv])-'/. 
n4- (6) = costJ~(p, sin (mV - 0) 

Formulas (3.3) are valid for r>t and any z >l. 
The neighborhood of point m0 = arcsin (tgcp /+g%) provides the basic contribution to the in- 

tegralB,- in the integration with respect to @. Carrying out, first, the integration with 
respect to @I and, then, to 'Ps with r>z>> I, we obtain 

I+0 = nq3Pr (pcJSc ii)-' (3.4) 

i.e. the flow defined by this formula, if it is at all possible, can only occur in the narrow 
sector close to 9 = ~12. In the whole of the remaining region of space, i.e. for any .z>l and 
r>17 the term B,- can be neglected as small in comparison with Bv-, and the completesolution 
of the problem is determined by formulas (3.3). 

The asymptotic formulas (3.3) imply that a steady stratification (P>O) induces a flow 
consisting of a vertical row of cells. The term "cell" is used here for J.enoting the simply 
connected flow region in which vorticity is of the same sign. At the cell boundaries +=O. 
Each individual cell is in contact with cells whose vorticity is of the opposite sign. The 
flow pattern is represented in Fig.1 by Stokes streamlines z,,_1=(3~tE)'I$n - I)"s"*, z,,= &'t~)"*n*@'*, 
r>l~where zn (r) is the boundary of cell number n. Such three-dimensional patterns were 

observed in laboratory experiments, away from the convection flow central region above the 
point heat source in a stratified fluid /4/, 



equal to 

the Brunt-V%i&ls period 2nfo, increases by one. 
The obtained here solution(3.3) shows that the unsteady 

vortices, initially generated by the constant heat source, are 
in time transformed in a system stationary cells, whichreflects 
the clearly visible feature of multi-level convection (Fig-l). 
Setting in (3.3) 11, = 0 we can determine the cell vertical width 
AZ,> = z,,,, (r) -z,(r). It is determined by the scale 1, slowly in- 
creases radially and also slowly contracts in the vertical 
direction 

AZ, = (3nZ)%(r / n)"a, r>l, n>i (3.5) 

Since formula (3.5) does not contain parameters of the heat 
source, we can assume that such stratification of flow awayfrom 
the source in a number of cells (or vortices) is related onlyto 
the properties of fluid. Hence in a stratified medium this ef- 
fect is to be expected under the action of any local perturba- 
tions (e.g., of dynamic nature /6,7/). 

Formula (3.3) also shows that the absolute velocity inside an individual cell decreases 
as R-',and the Reynolds number calculated losing the maximum velocity in the cell and its 
width (3.5) decreases correspondingly as R’-f* and nowhere exceeds the value calculated in Sect. 
3 in terms of scale L and of the vertical velocity at the coordinate origin. It is, thus, 
possible to consider (2.5) as the sufficient condition of applicability of the derived here 
solution of the linear problem. 

4. Free convection in the presence of a horizontal oncoming constant veloc- 
ity stream. Consider the steady state problem of convection induced by a point heat source 
continuously acting in a stably stratified medium in a stream flowing at constant horizontal 
velocity I1 . The source is located at the origin of a Cartesian coordinate system whose T 
axis is directed along the oncoming stream velocity vector. We assume the coefficients v, x 
and D to be equal to each other. Processes associated with diffusive transfer in the direc- 
tion of the x axis at distances r>vu-' can be neglected. In this approximation the system 
of equations of free convection is of the form 

uav, /ax = - p-‘Bp I& + vAv, + (BT’ -c’) g (4.1) 
u avv I a~ = -pap / ay + v~vy, A = a2 I ay2 + aa 1 t2.z 

au, i ay + au, i az = 0 
u aT’ / ax = VAT' + Q (pc,)-%S (z) 6 (y) 6 (x) 
u ad I ax = vAcI + rvz 

The substitution of variable x=mt formally reduces (4.1) to the system of equations for 
the plane unsteady problem of free convection under with a pulsed linear heat source located 
along the s,axis in a stratified fluid that is at rest at infinity. Using the solutionofthe 
problem in /8/, we obtain for the vertical velocity on the 5 axis (x>O)an expression of the 
form 

v, (0, 0, x) = ($npc"o,v)-'BgQm--'Jl (%50 (4.2) 

which indicates a singularity of the flow which is associated with the appearance in region 
x>O of stationary waves of length 2nul o0 whose amplitude is damped in conformity with the 
law r'la.. 

Solutions of similar plane problems /5,8/ leads us to the conclusion that the system of 
Eqs.(4.1) provides a solution that defines flow stratification at z>O into a number of vort- 
ices in planes (y,Z) normal to the X axis. 
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